The assessment of the limb mobility of stroke patients is an essential part of poststroke rehabilitation. Conventionally, the assessment is manually performed by clinicians using chart-based ordinal scales, which can be subjective and inefficient. By introducing quantitative evaluation measures, the sensitivity and efficiency of the assessment process can be significantly improved. In this paper, a novel single-index-based assessment approach for quantitative upper-limb mobility evaluation has been proposed for poststroke rehabilitation. Instead of the traditional human-observation-based measures, the proposed assessment system utilizes the kinematic information automatically collected during a regular rehabilitation training exercise using a wearable inertial measurement unit. By calculating a single index, the system can efficiently generate objective and consistent quantitative results that can reflect the stroke patient’s upper-limb mobility.

In order to verify and validate the proposed assessment system, experiments have been conducted using 145 motion samples collected from 21 stroke patients (12 males, nine females, mean age 58.7±19.3) and eight healthy participants. The results have suggested that the proposed assessment index can not only differentiate the levels of limb function impairment clearly (p < 0.001, two-tailed Welch’s t-test), but also strongly correlate with the Brunnstrom stages of recovery (r = 0.86, p < 0.001). The assessment index is also proven to have great potential in automatic Brunnstrom stage classification application with an 82.1% classification accuracy, while using a K-nearest-neighbor classifier.

Source: PubMed – NCBI